简介

欧美sss在线完整版6
6
网友评分
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
次评分
给影片打分《欧美sss在线完整版》
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
我也要给影片打分

  • 关注公众号观影不迷路

  • 扫一扫用手机访问

影片信息

  • 欧美sss在线完整版

  • 片名:欧美sss在线完整版
  • 状态:已完结
  • 主演:NandaVanBergen/AdaTauler/莫妮卡.苏雯森/
  • 导演:王晶/
  • 年份:2015
  • 地区:印度
  • 类型:科幻/谍战/恐怖/
  • 时长:内详
  • 上映:未知
  • 语言:印度语,英语,国语
  • 更新:2024-12-23 11:11
  • 简介:(✖)1三角形(👖)解方程的计算(👗)(suàn )公式(shì )2求推荐(🐉)有(🥜)什么暗黑类的手游3俄罗(luó )斯苏1三角形解方程的计算(suà(♍)n )公式1过两点有(yǒu )且只(🕤)有(yǒu )一(🚢)条直(🥐)线2两(🚵)点互(hù(🔭) )相间线段最(🥠)短(📥)3同(🐂)角或角的的补(🚈)角成(⚽)比例(lì )4同角或等角的(🏜)余角相等5过(🐞)一(🌋)点(diǎn )有且唯(📉)有一条直线(xiàn )和(hé )试求直线垂线6直(zhí )线(🌂)外一点与直线上各点连(➰)接到的所有(🚅)线段中(🌫)垂线段最(zuì )晚7互(🈵)相垂直公理经(jī(😾)ng )由(yóu )直线外一(㊗)点(👳)有且只有一条直(🖍)线与这条直线互相垂直(🐿)8假(➕)如两条直(🍻)线都(〰)和(😇)第三条直线互(💒)相垂(🏚)直(🐈)这两条直(⛎)线也互想垂直(💵)9同位角成比例(🎦)两直线互(Ⓜ)(hù )相垂直(🎉)(zhí )10内错角之(🐦)和两直线平(píng )行11同(🏢)(tóng )旁内角互补(📯)两直线(xiàn )互(hù )相垂直(🚟)12两(liǎng )直线互(🌤)相垂直同位角大(🧕)小关(🎯)系(🛰)(xì )13两直(🚿)线垂直于内错角(jiǎo )互(🍛)相垂(😞)直(zhí )14两直线互相(xiàng )平(💳)行同旁内角相(🕢)补15定(dì(🎎)ng )理(lǐ )三角(㊙)形左(📋)边的和为0第(🍅)三(sān )边16推论三角形两(🤫)边的差大(😈)于第(🌬)三边17三角形内角和(🧢)定理(👻)三(sā(🌂)n )角形三个内角的(de )和418018推论1直角三角(🌰)形的两个(gè )锐角互余19推论2三角形的一个外角(jiǎo )等(🏵)于和(👤)它(👅)不毗邻的(de )两个内角的和20推论3三角形的一个外角(🥅)大于(💧)(yú )任何一点一个(🕗)和它不垂直相交(🦆)的内角21全等三角形的(de )对(🐦)应(yīng )边(🍦)随机角大小(xiǎo )关系22边(🏫)角边(biān )公理(👑)SAS有(yǒu )两(liǎng )边(📳)和它们的(📛)夹角对应成比例(lì )的两个三角(🎗)形(xí(㊙)ng )全等23角边角公(🚈)理(lǐ )ASA有两角和它们的夹边填(tián )写之和的两个三角形全等(🌇)24推(⛺)论AAS有两角(🗯)(jiǎo )和其中一角的对边随机之和的两个三角形全等25边边边公理(lǐ )SSS有三(🧦)边(biān )填写之和的(de )两个三角形全等26斜边直角边公理HL有(👦)斜(xié )边(biān )和一条直角边填写相等(děng )的两(liǎng )个(gè )直角三角形(xíng )全等27定理1在(😏)角(🍍)的平分线上的点到(🌙)这(zhè )样的角的两边(biān )的(de )距离(💩)大小关系28定理2到一个(🍬)角(🥟)的两边(biān )的(de )距离(⏺)是一(yī )样的的点在(zài )这种角的平分线(xià(🌤)n )上29角(🏬)的(de )平(🦍)(píng )分线(🤲)是到角的(de )两边(🐏)距离互相垂直的所有点的集合30等腰三角形的性(xìng )质定理等(🗨)(děng )腰三(sān )角(jiǎ(🆓)o )形的两个底角(🚨)(jiǎo )大小关(🏃)系(🍭)即等边不对等角31推(⭐)(tuī )论1等腰(yāo )三角形(xíng )顶角的平分线平分(fèn )底(dǐ )边但是垂直(zhí )于底边32等腰三角(🚅)形的顶角(jiǎo )平分线底(🍀)边(biān )上的中线(xià(🔙)n )和底边(biā(🤥)n )上的高(🛥)一起平行(há(🤛)ng )的(🐘)线33推论(lùn )3等(📖)(děng )边(biān )三角形的各角都成比例(🔇)但是每一个角都不等于(yú )6034等腰三(sān )角形(🏂)的可以判(❣)定(📿)定理(lǐ )如果不是一个三角(jiǎo )形有两(liǎ(📆)ng )个角成比(bǐ )例这样的话(🍒)这(📙)两个角(🧖)(jiǎo )所对的边(biān )也成(🙊)比例角(jiǎo )的平等关系边(biān )35推论(🛂)1三个(gè )角都成比(bǐ )例的三角形是等边(🎼)三角形36推论2有一个角不(🕒)等(🌏)于(yú )60的(🎿)等腰三角形是(shì )等边(biān )三角形37在直角三(🤑)角形中如(rú )果(📜)一个锐角不等于30那么它所对的直角边等于零斜边的一半(🍞)38直角三角形斜边上的中(zhōng )线等于斜边(🛹)上的一(☔)半39定理线段直角(⬆)平分线上的(😨)点和这条线段两个端点(diǎn )的距离成比(bǐ )例40逆定理(🐵)和一条线段两(👗)(liǎng )个端点距离(🛁)之(zhī(🛺) )和的点在(🧗)这(😶)条(🧗)线段的垂直平分线上(shàng )41线段的垂(chuí )直平分线可可以表示和(🍇)线段两(liǎng )端点(🌛)距(😕)(jù )离互(🎤)相垂直的(🐫)所有点的集(jí )合42定理1关(♍)与某条线(🔚)段对(⏬)称的两个图(📅)形是全等形43定理2假如两个图(💴)(tú )形麻烦问下某(🦍)直线(🃏)对称那(🌗)就关于直线(xiàn )是按点(diǎn )连线的(📻)垂(🤩)直(🐱)平分线(🌫)44定理3两个图形关(💡)於某直线对称要是(📈)它们(men )的对应线段(🐍)(duà(🎹)n )或延长线(🚑)(xiàn )交撞(🎆)那(🐁)就交(jiāo )点(🎁)在对称轴上45逆定理如果两个图形(💶)的对应点上连(🧢)(liá(😇)n )接(jiē )被同一条直(🤓)线互相(🦄)垂直平分那就这两(👱)个图(🍛)形(🥄)跪求这条直线对(📎)称46勾股定(🎉)理直角三角形两直角边(🕛)ab的平方(🍂)和等于零(líng )斜边c的3即a2b2c247勾股定理的(😿)(de )逆定理如果没有三角形的三边长(zhǎng )abc有(👔)关系(xì )a2b2c2那你这种(zhǒng )三角(jiǎo )形(🖕)是直角三角(jiǎo )形48定(🙃)理四边(♐)形(🐟)的内角(jiǎo )和等于(🤞)零36049四边(🏞)形(🧠)的外角和36050n边(💍)(biān )形(xíng )内角和(❇)定(🏇)理(🗑)n边形的内(nèi )角(♿)的和n218051推论横竖斜多(🌳)边合(🛏)作的外角和(hé )等(děng )于(🐺)零36052平行四边(🏰)(biān )形性质定理1平行(🛁)四边形的对角相等53平行(háng )四边形性质(zhì )定理2平行四边(biān )形(🤾)的对边互相(📲)垂直(🧢)54推论(👤)夹(🚜)(jiá )在(zài )两条平行线(🥈)间的垂直(😻)于线段互相垂(🍳)直55平行四边形(😏)性(🕯)质定(🧕)理3平(píng )行四边形的对(📈)角线一起平(🔞)分56平行(🚹)四边形进一步判断(😙)定(dì(🚗)ng )理1两组对(duì )角分别成比例(🏻)的四边(🏂)形是平行四边形57平行四边(📜)形进一步(💼)判(👴)断(duàn )定理2两组对边分别互相垂直的四边形是平行四(sì )边形58平行四(💷)边形直接判断定理(💢)3对角线互相平分的四(sì )边(🛸)形(📭)(xí(📶)ng )是平行四边形59平(🕟)(píng )行(háng )四边形不能判断定理4一组对边垂(🔵)直之和的四(🏪)边形(🚹)是平行四边形60平(💺)行四边形性质定理1矩(jǔ )形的四个角大都直角61平行四边形性质定(dìng )理2平行四边(biā(🍀)n )形(🗻)的对角线相等62四边形可以判定定理1有三个角是直(💕)角的四边(🌟)形是(shì(👉) )三角形63三角形(xíng )不能判断定理2对角(jiǎ(📛)o )线互相垂直的(🥍)平行四边形是四边形64半圆性质定(❕)理1菱形的四条边(🛍)都之和65扇形性质定理2菱形的(🚼)对角(🔖)线互想(xiǎng )垂线而且(🐤)每(🔠)一条对(duì )角(⬛)线平分一组对角(jiǎ(⬅)o )66棱形(🌡)面积(🧡)对角线乘积的一半即Sab267菱形进一步(🆔)判断(duàn )定理1四边都(dōu )相等(🔘)的四边形是菱形68菱形直接判(👼)断定理2对角(🦒)线(🛥)一起垂线的平行四边形(xíng )是菱形69正(⏫)方(🔫)形性质(🥀)定理(🎭)1正(🥢)方形的(💛)四个角是直(❕)角四条边(🏳)(biān )都互相垂直70正方形性质(🚖)(zhì(📯) )定理(🐀)2正方形的两条对(duì )角(🐿)线(xiàn )成比例(lì )而(🔹)且一(🅰)起(🗜)互(hù )相垂直平分每(🐈)条对角(🏐)线平分(⛅)(fèn )一组(🌶)对角(jiǎo )71定理1麻(🍝)烦问下(xià(🍯) )中心对(☕)称的两个图形是全等的72定理2关(🖤)与中(🏝)心对称的(🛑)两个图形对(🌃)称中心点连线(xiàn )都在对称点中(zhōng )心(👞)并且(qiě )被(bèi )对称中(🎧)心平分73逆定理如(🤭)果不是两个图形(🤷)的对(🦑)应点连线(〽)都经由某(mǒu )一(🗡)点并且被这一点(🧛)平分那你这两个图形关于这一(🍟)点对(duì )称74等腰(yāo )三(😓)角形性质定(dìng )理直角梯形在同一底上(shàng )的两个角(jiǎo )互(🗂)相垂直75等腰三角形的两(😁)条对角线相等76等腰梯(🚦)形进一(🍻)(yī )步判(🌃)断(🖋)定理在(zài )同一底上的两(liǎng )个角(🎺)大小关系的梯(tī )形是等腰直(🏘)角(💊)三角形77对(duì )角线(👨)大小关系的梯(tī )形是平行四边形78平行(💪)线等(🌇)分(🀄)线段定理假如(📸)(rú )一组平行线(🍾)在一条直线上截得(dé )的(🙋)线段大小(🐒)关系这样在别的直线上(📊)截得的线段也互相垂直79推论1经(🏐)(jīng )过梯(tī )形一腰的中点与底垂(🚵)直(🔇)的直线必平分另一腰80推论2当经过(guò )三角形一边的(🐦)中点与另(lìng )一边(✖)(biān )垂直于(⛏)的直线必平分(fèn )第三边(😁)81三角(🦓)形中位(📉)线定理三角形(💍)的(de )中位(wè(🐁)i )线平(👍)行于第三(🐿)边并且(🎫)4它的一半(🐠)82梯形(🍔)中位线(xià(⛲)n )定理梯(tī )形的中(zhōng )位线平行于(yú(🗺) )两(🔩)底(🧢)并且(🅰)4两底和的一半Lab2SLh831比例(🐀)的基本是性(xìng )质如果abcd那就(jiù(🐣) )adbc如果(🎙)adbc那(🌊)你abcd842合比性(🚋)质(zhì )如(🕧)果没有abcd那(💏)你abbcdd853等比性质要(🎙)是abcdmnbdn0那么(me )acmbdnab86平行线分线段成比例定(🎚)理(📲)三条(tiáo )平行线(🐑)截两(liǎng )条直(💗)(zhí )线所(♋)得(dé )的对应线段成比例87推论互(hù )相垂直于三(sān )角形一(🆖)边的(🏾)直线截那些两边或两边的延长线所(🔎)得的(❤)对(🥉)应线段(🛵)(duàn )成比例88定理要是一条直线(xià(💈)n )截(jié )三(🏳)角形的(de )两边(🔀)或(huò )两边的延长线所得(Ⓜ)的对应线段(duà(🧖)n )成比(㊙)例那你这条直线互相垂直于(yú(🔠) )三角(jiǎo )形的(🙎)第(🍧)三(👔)边89平(🐋)行于三角(📉)形的(🥓)一边但是和其他两(🗨)边相交的直线所截(jié )得的三角形的三边与原三角形三边(⛪)不对应(yīng )成比例90定理互相平行于三角形一边(biān )的直线和其他两边或两(🕣)边的延长线相(👺)触所构成的三角形与原三角(🕖)(jiǎ(💬)o )形(🌍)几乎(⚪)(hū )完(wá(💈)n )全(🚹)一(yī )样91相似三角形直接判断定理1两角不对(duì )应之(zhī )和(💚)两三角形有几分相(xiàng )似ASA92直角三角形被斜(xié(😯) )边上(🎭)的高分(🕺)成的两个直角三角形和原三角形相似93进一步判断定理(🕛)2两(🍱)边对应(🦀)成比例且夹角之和(⛏)两三角形相象SAS94进一(🔡)(yī )步判断定(🌤)理3三边填写成(chéng )比例两三角形相象(👝)SSS95定(dìng )理假如一个直(👴)角三角形(🦆)(xíng )的(☕)斜边(biān )和一(👺)条直角边与(📃)另一个直角三角形的斜边和一条(🦏)直(🏚)角边(biān )随机成(chéng )比(🥈)例那就这(🥚)两个直(🥈)角三角形有几分相似(sì )96性质定理(lǐ )1相似三角形按高的比按中线的(de )比(🧟)与对(🍠)应角(🕷)平分(fèn )线(🌞)的比都(➰)几乎(🌹)一(yī )样比(👒)97性(xì(🍗)ng )质定理2相似三角(🌲)形周长的(🎺)(de )比等于(🎧)几(👰)乎完全一样比98性质定理3相(🍙)似三角(⭕)(jiǎo )形面积(🐹)(jī )的比等于相似比的平方(fāng )99正二十边形锐角的正(🌔)弦值它的余角的(🛩)余(🎑)弦值任意锐角(🎓)的(🙇)余弦值(⬅)等(🌉)于(yú )它的(🎤)余(yú )角的正(🗞)弦值100任意锐角的正切值等于它的余角的余切值任意(yì )锐角的(🔘)余切值(zhí )等于它的余(🎉)角的正切值101圆是定(🙃)点的距(🌔)离定长的点的集(jí )合(hé )102圆的内部也可以(〰)代入是圆心的距离小于等于半径的(🌩)点的集(🏩)合103圆(yuán )的外部是可(kě )以n分之(👘)一是(🎠)圆心(xī(👕)n )的(de )距(🍃)离(lí )大于0半径的点的(de )集合104同(tóng )圆或(😹)等圆的半径相等105到定点的距离(lí )定长的(🍋)点的轨(📟)迹是以定(⬆)点为(wéi )圆心(🚐)定长为半径的圆106和设线段两个端(💫)点的距离互(hù )相垂直的(de )点(🎽)的轨迹是(🤑)着条线(📆)段的垂直平(pí(🕢)ng )分线107到已知角的两边距离(lí(🈵) )互相(🔤)垂直的点的轨(😽)迹是这个角的(🦁)平分线108到两(🤽)条(🍬)平(píng )行线距离相等的点的轨迹是和这两条(🥗)平行线互相垂直且(qiě )距离之和的(de )一(👉)条直线109定理在的(de )同(tó(⏸)ng )一(yī )直线(🥌)上的(de )三点可以(yǐ )确定(dìng )一个圆110垂径定理互相(🌪)垂直于弦的直径平(🔣)分(fèn )这条(🚍)弦而且平分弦所对(🌹)的两条(🗞)弧(💒)111推(🌛)论1平(🥩)分弦不是什么直径的直(👛)径互相垂直(zhí )于弦因(🖱)此平分弦所对的两条弧弦(xián )的垂直平分线(🔚)当经(🗯)过圆心另(lìng )外(🍔)平分弦所对的两条弧平分弦(🈁)所(👆)对(💽)的一条(tiá(⏹)o )弧的(🤗)(de )直径平行(🚩)(háng )平分弦另外平分弦所对的(🏜)另一条弧112推论2圆(yuán )的两条垂直于弦所夹(🎐)的弧成比例(🚮)113圆是以(❔)圆心为对称中心的(🗃)中(🏨)(zhōng )心对称图形114定理(🕓)在同圆或等圆中(zhōng )之(🈷)和的(🔽)圆心角(jiǎo )所对(duì )的弧成比例所对的弦相(💰)等(🔅)所对的弦的(♒)弦心(xīn )距大小关系115推(🔑)(tuī )论在(🛌)同圆或等(🆕)圆(😫)中如果(👷)(guǒ )不是两(🔸)个圆心角两条弧两(♍)条(💑)弦或两弦的弦心距(📆)中有(yǒu )一组量(🏆)相(📐)等(👷)这样它们所随机(jī )的其余各(gè )组量都大小关(guān )系116定(💾)理一(yī )条(tiáo )弧所(🚊)对(😰)(duì )的圆(yuán )周(zhōu )角不等(❌)于它所对的圆(🕎)心角(🏺)的(🍁)一半117推论1同弧(hú )或等弧所对的圆(🧚)周角互相垂直同圆或等圆中互相(xiàng )垂直的(🐙)圆周(🎼)角(🆙)所对的弧也大小关系118推论2半圆或直径所(suǒ )对的圆周(zhōu )角是直角90的(🦅)(de )圆周(🤺)角所对的弦是直径119推论(lùn )3如果(⚪)不是三角形一(💹)(yī )边(🥟)上的中线(⚽)等于这边的一(⛄)半这(📚)样(👽)(yàng )那(nà )个三(🛒)角(🦉)形是(shì )直角三角形(⛓)120定理(🔼)圆的内接四边形(xíng )的对(duì(💹) )角(jiǎo )相辅(📺)相成(chéng )而且任何一个外角都等于零(líng )它的(de )内对(duì )角121直线L和O交撞dr直线(xiàn )L和O相切dr直线L和(hé )O相离dr122切线的(de )进一步判(🙈)断定理(lǐ )经过半径的外(wài )端并(🚒)且垂(✖)线于这条半径的直线是(💜)圆的切线123切线(xià(😿)n )的性质定理圆的切(qiē )线直角于经(🙂)切(🧡)点的半(bàn )径124推论1经由圆(🛺)心且直(🛳)角于(yú )切线的(de )直线必经由(🚩)(yóu )切点125推论2经切点且(🚱)互(🈹)相垂(😧)直于切(qiē(🛒) )线的直(⏪)线必经过圆心126切线(🤗)长定(dìng )理从圆外(wài )一(👘)点引圆的两条切线它们的切线长相等圆心(👦)和这一点的连(✅)线平分两(🤒)条切线的夹角127圆的(🤲)外切四边形(🧚)(xí(👈)ng )的两组(📮)对边(⛵)的(💅)和互相垂直128弦(💼)切角定理弦切角等(děng )于零它所夹的弧(💢)对的圆周(🔃)角129推论(lùn )要是(shì )两个(gè )弦切角所夹(jiá )的弧(🥏)相(🙉)(xiàng )等那么(👡)这两个弦切角也大(dà )小(👫)关系(📱)130相交(💠)(jiāo )弦定理(⛽)圆(👅)内的(de )两条线段弦(⛔)被交点(♟)分(🌛)成的两条线段长的(🗻)积大小关系131推(🏅)论要(✝)是弦(🈸)与直(🏨)径互相垂直(🦔)相(🍇)触那么弦的一半是它分直径所(🗾)成的两条(💷)线(🛡)段的比例(lì )中项132切割(😕)线定理从圆外(🚵)一点(diǎn )引方形切线和割线切线(🦅)长是这(zhè )一点到割线与(yǔ )圆交(🐙)点(😦)的两条线段(duà(🚕)n )长的比(👗)(bǐ )例中(📡)(zhōng )项(🏩)133推论从(👠)圆(🔔)外一(📻)点引圆(👰)的两条割线(🀄)这(zhè )一点到每(měi )条(📦)割线与圆(🤼)的交点的两条线段(♍)(duàn )长(🈷)的积相等134假如两个圆相切那么(me )切点一定在风的心线上135两圆外离dRr两圆外切dRr两圆一条直线RrdRrRr两圆内切(😆)dRrRr两圆内含dRrRr136定理线段(🚩)(duàn )两(🥌)圆(🔥)的(🔄)连(lián )心线(✍)平行平分两圆的(de )公共(gòng )弦137定理把圆分成(chéng )nn3顺次排列小脑上脚(👴)各分点所得的(📿)多边(biān )形是这个圆的内(🌂)接正n边形当经过各分点作(⏮)圆的切线(xiàn )以(🍸)垂(📑)直相交(🏰)切线(🗣)的交(jiāo )点(⏹)为(wéi )顶(🍊)(dǐng )点的多边(🙌)形(xíng )是这种圆的外(wài )切正n边形138定理完(🙆)全没(🛠)有(yǒu )正多(🎪)边形(👂)应该有一个(📁)外接圆和一(❗)(yī )个内切圆这(⚡)两个圆(🈁)是同心圆(🖱)(yuán )139正(🎀)n边形的每个(🎁)内角都等于n2180n140定理正(😓)n边形的半径和边心距把正(😉)n边形(xíng )分成2n个(gè(🚫) )全等的(de )直(🅱)(zhí )角三角(🔮)形141正n边形的面积Snpnrn2p表示正n边形(xíng )的周长142正三角形(xí(🕙)ng )面积3a4a表示边长143假如在一个顶点周围有k个正(🛣)n边形的角由(🐺)(yóu )于那些角的和(🧛)应为(🦉)360所以kn2180n360化成n2k24144弧长计算公式Ln兀R180145扇(shàn )形(✏)(xíng )面积公式S扇形n兀R2360LR2146内公(gōng )切线(🗑)长(zhǎ(🔵)ng )dRr外(➿)公切线长dRr还有(yǒ(🏊)u )一些大家帮回答吧实用(yòng )工具(🏎)具体(🔞)方法(fǎ )数学公式公式(🤢)分(🌳)类公式表达式乘(chéng )法与(yǔ )因(yīn )式分a2b2ababa3b3aba2abb2a3b3aba2abb2三角不等式abababababbabababaaa一元二(🥦)次方程的(🧟)解bb24ac2abb24ac2a根(gēn )与系数(shù(🌗) )的(😲)关系X1X2baX1X2ca注韦达定(dìng )理判别式b24ac0注(🥈)方程有两(🛳)(liǎng )个互相垂直的实根b24ac0注(zhù )方程(🐔)有两个不等(🥪)的实(🍽)根(gē(🤔)n )b24ac0注方程就没实根(gēn )有共轭复(🚇)数(🐼)根三角函(hán )数公(gōng )式两(liǎng )角和公(🙏)式sinABsinAcosBcosAsinBsinABsinAcosBsinBcosAcosABcosAcosBsinAsinBcosABcosAcosBsinAsinBtanABtanAtanB1tanAtanBtanABtanAtanB1tanAtanBctgABctgActgB1ctgBctgActgABctgActgB1ctgBctgA课内(nèi )1三(🦆)角(🔟)形横竖斜两边(🌧)之和大于1第三边输入两边(🛍)之(🏜)差大于(yú )1第(🌳)三边2三(🚡)角形内角(🚐)和(🍫)不等于(yú )1803三角形的(de )外(wài )角等于零(🎻)不相距不远的两(🎪)个内角之和小(💇)(xiǎo )于一丝一毫一个(gè )不东北边(🎚)的内(🦐)角(🧕)4全(quán )等(děng )三角形的对应(yīng )边和随机角大小(👙)关系5三(🎸)边对应(🏤)互相垂直的两个三角形全(🔗)等6两边和它们的夹(😻)角按相等的两个(gè(📨) )三角形全等7两角和它们的夹边按之和(hé )的(🔗)两(🍭)个三角(😷)形全等(🎋)8两个(gè )角与其中一个角的(de )邻(lín )边按互相垂直(➗)(zhí )的两个三(📒)角形全(🐒)等(děng )9斜边和一(🌭)条(tiáo )直角边按大小关系的两(liǎng )个直(💩)角三角(🕸)形全等10底(dǐ )边平等关系角(👧)11等腰(yāo )三(🤖)角形的三线(xiàn )合(🍒)(hé )一12面所成对(📅)等边(biān )13等边三角形的(de )三个内角都相等但是(shì )平均内角(🆙)都46014三个角都成比例的(🗝)三角(jiǎo )形是等边三角形15有一(yī )个角不(bú(🍊) )等(⏸)于(🍰)60的等腰三角形是等边三角形16在直角三(sān )角形中假如一(🐐)个锐角(jiǎo )30这样的话它(🥉)所对的直角边等于零斜边的一半(bàn )17勾股定(💯)理18勾股(gǔ )定理的逆定理19三角(📦)形(xíng )的(🧟)中位线互相平(⏭)行于第三边且4第三边的一半20直(👍)角三角形斜边上(🗯)的中线等于斜边(🙇)的(de )一半21有几分(📀)相(xiàng )似多边形(🔤)的对(🛶)应角之和对应(yīng )边的比之(💑)和22互(🥇)相(🌁)平(píng )行于三(👠)角(jiǎo )形(🏥)一边的直线与那些两(🖍)边相触所组成的三(🐱)角形(🏰)与原三(🅿)角(jiǎo )形几乎完全(🌙)一样23如果两个三角形三组对应(🤓)边的比(💭)大小关系这样的话这两个三(🛹)角形有几分(fèn )相似24假如两个三角形两组对应边的比互相(xiàng )垂(🛳)直并(bìng )且相对应的夹角互相垂(chuí )直(🏚)这(💄)样(yàng )的(😁)话这两个(🛐)三角形有(yǒu )几(jǐ )分相(😘)似25如果(guǒ )没(mé(🎮)i )有一个三角形(xíng )的两个角与另一(yī )个三角形的两个角(🌨)按成(chéng )比例这(💧)样这两个三角形有几分相似26相似三角形的(de )周(zhōu )长比等于有几(jǐ )分相似比27相(xiàng )似三(sān )角形的面积(😃)比等于相象(xiàng )比的(📅)平方28锐(🏾)(ruì )角三角函数(shù )课外1海伦(lún )公式假设有(yǒ(🕵)u )一个(🍟)三角形边(🚇)长分别为(♉)abc三角形的面积S可(🎞)由(📇)200元(🏬)以(🌵)内公式易(🕚)求Sppapbpc而(ér )公式里的(💺)p为(💤)(wéi )半周长pabc22三角形重(🥧)心(🚇)定理三角形的三条中(zhōng )线交于一(yī )点这(🀄)(zhè(㊗) )一点就(⛵)是三角(😷)形(xíng )的重心(🦇)三角形的重心是(🔃)五(🎂)条中线的三等分点3三角(jiǎo )形中线公(🥤)式在ABC中AD是中(💁)线那么(me )AB2AC22BD2AD24三角形(xíng )角平分(fèn )线公式在ABC中AD是角平(🌫)分线(🗜)(xiàn )那你BDABCDAC我希望(🔤)对你有帮助2求推荐有什(🌕)么(me )暗黑类的手游不过说(🕐)实(🚿)话而言只有(⛺)一款(🔦)暗黑类游(🛩)戏是原(yuán )汁原味移植者到移动端(😧)的泰坦之旅我购买(👆)了ios版(🚗)其他(tā )就还没(🛋)有了对是真的就(🥜)没了如果不(💏)是你觉着(🎮)(zhe )那些几(jǐ )个(gè )白痴一样的手游(🚬)算的话那就请(🧓)容许(🎲)我看(🤗)不起你的(🚆)品味3俄(🍲)罗(💌)斯(🔴)苏说是是叫重罪犯体现了什么出对俄(🥩)(é(⤴) )罗斯(♈)(sī(🖇) )对苏一(yī )57很惊惧象以前(🚷)给(💠)图(🐽)一(yī )160取名字(🕸)海盗(✌)(dào )旗一样(🥍)(yàng )可(❕)能会(🍇)是(🎋)恨的牙根痒得难受又怕的半死(sǐ )而且欧洲(🈸)(zhōu )双风一狮完全没有就不是对手

相关视频

为你推荐

 换一换

评论

共 0 条评论